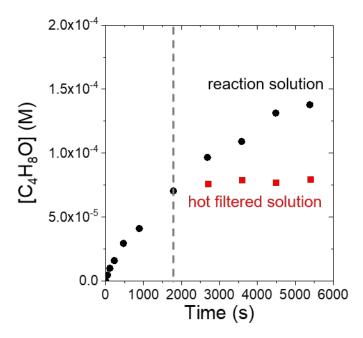
Supporting Information

Reactive Species and Reaction Pathways for the Oxidative Cleavage of 4-Octene and Oleic Acid with H₂O₂ over Tungsten Oxide Catalysts

Danim Yun,^{1,2} E. Zeynep Ayla,² Daniel T. Bregante,² and David W. Flaherty^{1,2}*

¹DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign

²Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801


*Corresponding Author

Phone: (217) 244-2816

Email: dwflhrty@illinois.edu

S1. Stability of WO_x sites During Oxidative Cleavage of 4-C₈H₁₆

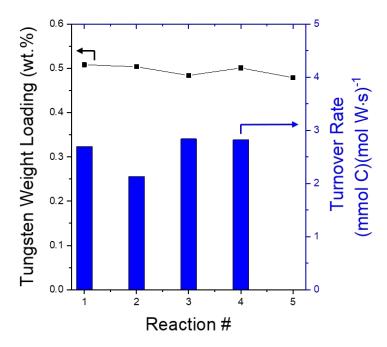

S1.1. Hot Filtration Test

Figure S1. Butanal concentrations of (●) non-filtered reaction solution and (■) hot filtered solution as a function of reaction time (5 mM 4-C₈H₁₆, 0.1 M H₂O₂, 0.39 M H₂O in CH₃CN) over WO_x-Al₂O₃ at 333 K.

To determine if catalytically active forms of WO_x leach from the alumina support, we carried out hot filtration tests for WO_x -Al₂O₃ catalyst. Hot filtered solutions do not show any change in butanal concentration following filtration of catalyst (Figure S1). This result indicates that the active WO_x species do not leach from the alumina support.

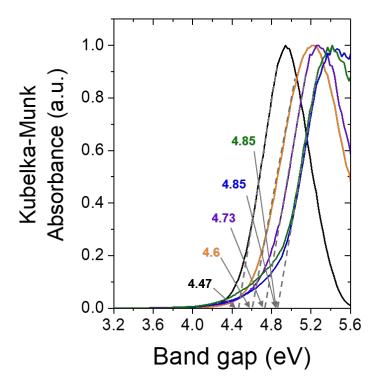
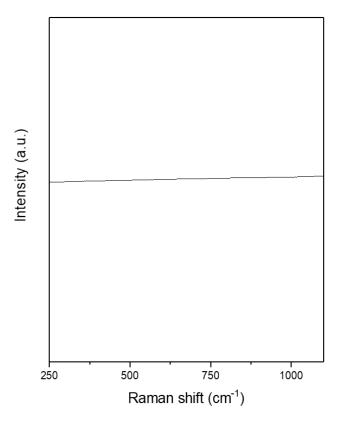

S1.2. Regeneration of WO_x-Al₂O₃ catalyst

Figure S2. Tungsten weight loading of fresh and regenerated WO_x - Al_2O_3 catalysts and turnover rate for butanal formation during recycle test (5 mM 4- C_8H_{16} , 0.1 M H_2O_2 , 0.39 M H_2O in CH_3CN) over WO_x - Al_2O_3 at 333 K.


To confirm the reusability of WO_x - Al_2O_3 catalyst, we conducted four subsequent batch reactions. EDXRF results show that the W content remained nearly constant at $0.50 \pm 0.006\%$ by weight throughout the course of the four reactions, and the turnover rates were consistently 2.6 ± 0.2 (mmol C)(mol W s)⁻¹ for all four reactions. This consistency demonstrates that the WO_x - Al_2O_3 catalysts are stable and regenerable.

S2. Additional Catalyst Characterization

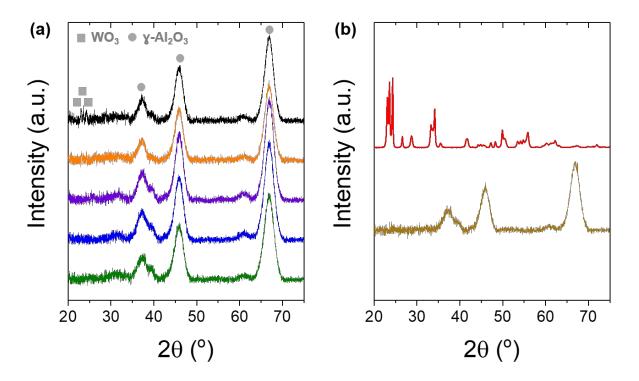


Figure S3. Tauc plots of the X-WO_x-Al₂O₃ (0.03 (—), 0.06 (—), 0.1 (—), 0.4 (—), and 0.9 (—) Watoms per unit surface area) derived from DRUV-Vis spectra under ambient conditions

Figure S3 shows the Kubelka-Munk absorbances of X-WO_x-Al₂O₃ catalysts as a function of a photon energy (i.e., Tauc plot). X-WO_x-Al₂O₃ samples with surface coverages equal to or less than 0.06 W·nm⁻² consistently exhibit a band gap energy of 4.85 eV. This suggests that materials with W-atom coverages below 0.06 W·nm⁻² approach a constant distribution of WO_x complexes.

Figure S4. Ex situ Raman spectra taken with a 532 nm laser (1.6 mW· μ m⁻²) of γ -Al₂O₃ at 298 K Figure S4 indicates γ -Al₂O₃ support does not give rise to any features visible in Raman.

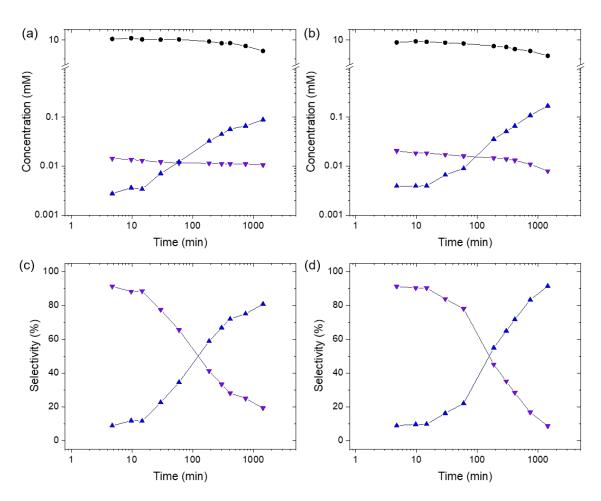


Figure S5. XRD patterns of (a) X-WO_x-Al₂O₃ (0.03 (—), 0.06 (—), 0.1 (—), 0.4 (—), and 0.9 (—) W-atoms per unit surface area, W·nm⁻²) and (b) WO₃ NP (—), and χ -Al₂O₃ (—).

Figure S5 shows XRD patterns of WO_x -Al $_2O_3$ catalysts, WO_3 NP, and $_4$ -Al $_2O_3$. The 0.9-WO $_x$ -Al $_2O_3$ catalyst gives weak XRD peaks at 23, 23.6, and 24.4°, which correspond to crystalline WO $_3$ (JCPDS No. 83-950). This suggests that WO_x -Al $_2O_3$ catalysts with W-atoms surface coverages less than 0.9 W·nm⁻² possess smaller and less ordered WO $_x$ complexes.

S3. Reaction Pathways for the Oxidative Cleavage of 4-Octene and Oleic Acid over WO₃ and WO_x-Al₂O₃ catalysts

S3.1. Product Concentrations and Selectivities as Functions of Reaction Time for the Reactions of 4-Octene

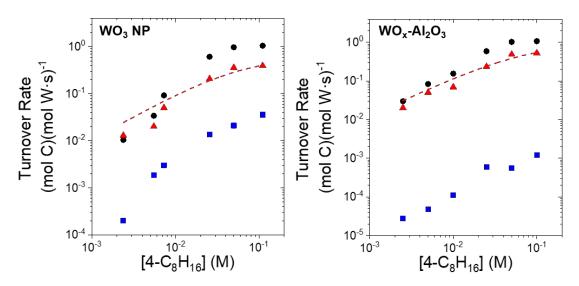


Figure S6. Concentrations of 4-octene (●), 4,5-epoxyoctane (\checkmark), and butanal (\blacktriangle) as a function of reaction time (10 mM 4-octene, 0.1 M H₂O₂, and 0.39 M H₂O in CH₃CN at 333 K) over (a) WO₃ and (b) WO_x-Al₂O₃, and selectivity towards 4,5-epoxyoctane (\checkmark) and butanal (\blacktriangle) as a function of reaction time (10 mM 4-octene, 0.1 M H₂O₂, and 0.39 M H₂O in CH₃CN at 333 K) over (c) WO₃ and (d) WO_x-Al₂O₃.

Figure S6 shows that selectivity towards 4,5-epoxyhexane is small ($\leq 20\%$ and 10% for WO₃ and WO_x-Al₂O₃, respectively) in comparison to butanal selectivities ($\sim 80\%$ and $\sim 90\%$ for WO₃ and WO_x-Al₂O₃, respectively). These comparisons suggest that rates of steps 9 and 11 exceed that for

step 4 by a significantly amount (Scheme 3 in the masnuscript), which implies also an even greater difference between the associated rate constants (i.e., k_9 , $k_{11} \gg k_4$).

S3.2. Turnover Rates for 4-Octene Consumption, Epoxide Production, and Aldehyde Production in 4-Octene Conversion

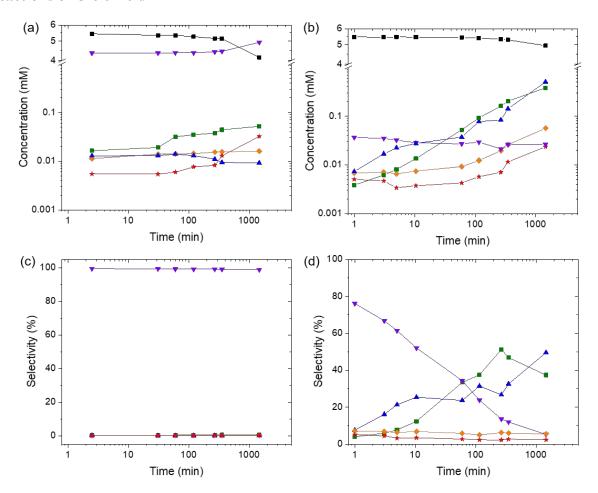

Figure S7. Turnover rates for 4-octene consumption (\bullet), epoxide production (\blacksquare), and butanal formation (\blacktriangle) (0.1 M H₂O₂, and 0.39 M H₂O in CH₃CN at 333 K) as a function of [4-C₈H₁₆] over WO₃ and WO_x-Al₂O₃.

Table S1. Conversion and product selectivities over WO₃ and WO_x-Al₂O₃ in the oxidative cleavage of 4-C₈H₁₆ with H₂O₂ (0.025-0.1 M 4-C₈H₁₆, 0.1 M H₂O₂, and 0.39 M H₂O in CH₃CN at 333 K)

Sample	Conversion (%) ^a	4,5-Epoxyoctane (%) ^b	Butanal (%) ^b		
WO_3	< 3	≤ 5	95		
WO_x - Al_2O_3	< 4	≤ 5	95		
alkene conversion (%) = $\frac{mole\ of\ alkene\ reacted}{mole\ of\ alkene\ fed} \times 100$ bselectivity (%) = $\frac{mole\ of\ C\ in\ product}{mole\ of\ C\ in\ all\ products} \times 100$					

Figure S7 shows turnover rates for 4-octene consumption, epoxide formation, and butanal formation (0.1 M H_2O_2 , and 0.39 M H_2O in CH_3CN at 333 K) over WO_3 and WO_x -Al $_2O_3$. Over both catalysts, turnover rates for products formation ((mol C) (mol W s)-1) match rates for 4-octene consumption within 30% at conditions and low conversions used here, and selectivity for butanal is \geq 95%. Therefore, we used butanal formation rates to report oxidative cleavage rates.

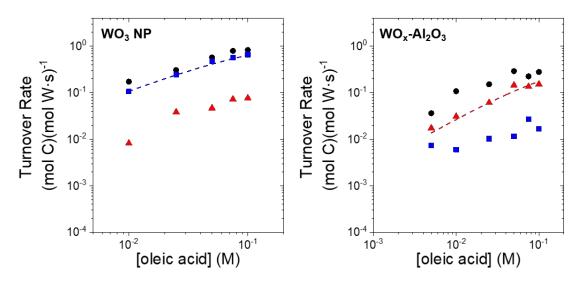

S3.3. Product Concentrations and Selectivities as Functions of Reaction Time for the Reactions of Oleic Acid

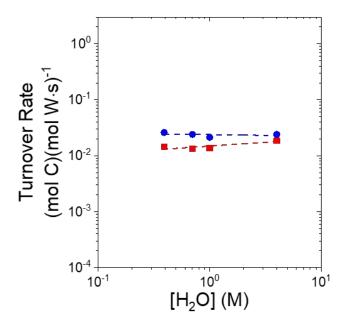
Figure S8. Concentrations of oleic acid (●), 8-(3-octyloxiran-2-yl)octanoic acid (▼), nonanal (■), azelaaldehydic acid (▲), nonanoic acid (♦), and azelaic acid (★) as a function of reaction time (5.5 mM OA, 0.5 M $_{2}O_{2}$, and 1.98 M $_{2}O_{3}$ in CH $_{3}CN$ at 343 K) over (a) WO $_{3}$ and (b) WO $_{3}$ -Al $_{2}O_{3}$, and selectivity towards 8-(3-octyloxiran-2-yl)octanoic acid (▼), nonanal (■), azelaaldehydic acid (▲), nonanoic acid (♦), and azelaic acid (★) as a function of reaction time (5.5 mM OA, 0.5 M $_{2}O_{2}$, and 1.98 M $_{2}O_{3}$ in CH $_{3}CN$ at 343 K) over (c) WO $_{3}$ and (d) WO $_{3}$ -Al $_{2}O_{3}$

Figure S8 shows that the selectivity towards epoxide is ~99 % over WO₃, and therefore, we measured turnover rates for epoxidation for WO₃ catalyst. On the other hand, selectivity towards oxidative cleavage products (e.g. aldehydes and acids) are gradually greater (> 80% over 2 h) than epoxide selectivity ($\leq 20\%$ over 2 h) over WO_x-Al₂O₃. Therefore, we measured turnover rates for oxidative cleavage products formation for the supported catalyst.

S3.4. Turnover Rates for Oleic Acid Consumption, Epoxide Production, and Aldehyde and Acid Production in Oleic Acid Conversion

Figure S9. Turnover rates for oleic acid consumption (\bullet), epoxide production (\blacksquare), and nonanal, nonanoic acid, azelaaldehydic acid and azelaic acid formations (\blacktriangle) (0.5 M H₂O₂, and 1.98 M H₂O in CH₃CN at 343 K) as a function of [oleic acid] over WO₃ and WO_x-Al₂O₃.

Table S2. Conversion and product selectivities over WO₃ and WO_x-Al₂O₃ in the oxidative cleavage of oleic acid with H_2O_2 (0.01-0.1 M oleic acid, 0.5 M H_2O_2 , and 1.98 M H_2O in CH_3CN at 343 K)


Sample	Conversion (%)a	Epoxide (%) ^b	Nonanal (%) ^b	Nonanoic acid (%) ^b	Azelaaldehydic acid (%) ^b	Azelaic acid (%) ^b
WO_3	< 6	98	0.6	0.4	0.5	0.5
WO_x - Al_2O_3	< 2	20	35	5	15	25

alkene conversion (%) =
$$\frac{mole\ of\ alkene\ reacted}{mole\ of\ alkene\ fed} \times 100$$

bselectivity (%) = $\frac{mole\ of\ C\ in\ product}{mole\ of\ C\ in\ all\ products} \times 100$

Figure S9 shows turnover rates for oleic acid consumption, epoxide formation, and oxidative cleavage products formation over WO₃ and WO_x-Al₂O₃ at 343 K. The turnover rates of epoxide formation and oxidative cleavage products formation over WO₃ and WO_x-Al₂O₃, respectively, match rates for oleic acid conversion (80% for WO₃ and 60% for WO_x-Al₂O₃). Therefore, epoxide production and oxidative cleavage product formations provide an accurate basis to report oleic acid consumption over WO₃ and WO_x-Al₂O₃, respectively.

S4. Role of H₂O on Oxidative Cleavage of 4-C₈H₁₆ and Oleic Acid

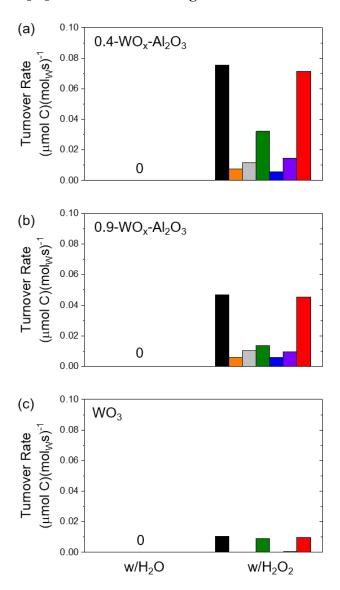

S4.1. Turnover Rates for Butanal Formation as a Function of Water Concentration

Figure S10. Turnover rates for oxidative cleavage of 4-octene (butanal formation) as a function of $[H_2O]$ for WO_3 (\blacksquare , 2.5 mM 4- C_8H_{16} , 0.1 M H_2O_2) and WO_x -Al $_2O_3$ (\bigcirc , 2.5 mM 4- C_8H_{16} , 0.1 M H_2O_2) at 333 K.

Figure S10 shows turnover rates for butanal formation do not depend on $[H_2O]$ over both WO_3 and WO_x -Al₂O₃ catalysts, which suggests that any interactions between H_2O molecules and H_2O_2 -derived reactive intermediates (i.e., W-(η^2 -O₂) and W-OOH) or transition states remain constant across this range of conditions (0.39 to 4.0 M H_2O).

S4.2. Role of H₂O and H₂O₂ in Oxidative Cleavage of Oleic Acid

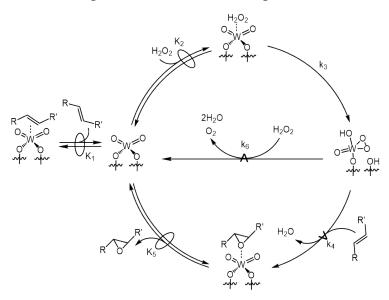
Figure S11. Turnover rates for the consumption of C in oleic acid(\blacksquare), the formations of C in 8-(3-octyloxiran-2-yl)octanoic acid(\blacksquare), nonanal(\blacksquare), nonanoic acid(\blacksquare), 9-oxononanoic acid(\blacksquare), azelaic acid(\blacksquare), all products(\blacksquare) with H₂O (0.05 M oleic acid, 1.98 M H₂O) or H₂O₂ (0.05 M oleic acid, 0.5 M H₂O₂, 1.98 M H₂O) on 0.4 W·nm⁻², 0.9 W·nm⁻², and WO₃ at 343 K

Figure S11 suggests H_2O_2 is required for oxidative cleavage of oleic acid, and this reaction does not proceed in the absence of H_2O_2 .

S5. Derivation of the Rate Expression

S5.1 Pseudo Steady State Hypothesis Applied to W-(η^2 -O₂) and W-OOH Intermediates

We can assume that the concentration of a specific reactive species is not changing as a function of time during a reaction by using the pseudo steady state hypothesis (PSSH). Application of the PSSH to W- $(\eta^2$ -O₂) and W-OOH intermediates of tungsten oxide catalysts in section 3.5 yields:


$$\frac{d[W-OO]}{dt} \approx 0 = k_3 [H_2 O_2 *] - k_4 [C_8 H_{16}] [W-OO] - k_6 [H_2 O_2] [W-OO]$$
 (S1)

where k_x represents the rate constant for step x, [W-OO] is the number of W-(η^2 -O₂) and W-OOH, $[H_2O_2^*]$ is the number of H₂O₂ molecules bound to active sites, and all other species within brackets ([]) are the corresponding liquid-phase concentrations. When H₂O₂ adsorption is assumed to be quasi-equilibrated (step 2, Scheme 3), Equation S1 can be rearranged to yield:

$$[W - OO] = \frac{k_3 K_2 [H_2 O_2][*]}{k_4 [C_8 H_{16}] + k_6 [H_2 O_2]}$$
 (S2)

where [*] is the number of unoccupied (or solvent-covered) active sites. Equation S2 is then combined with Equation 3 (main text) to yield Equation 4 from the main text.

S5.2 Derivation of the Rate Expression for H₂O₂ Decomposition

Scheme S2. Proposed elementary steps for epoxidation of alkene and H_2O_2 decomposition over tungsten oxide catalysts. The $\xrightarrow{}$ symbol denotes a quasi-equilibrated step and the $\xrightarrow{}$ symbol signifies a kinetically relevant step.

Scheme S2 shows a series of elementary steps that are consistent with the rate measurements for $4\text{-}C_8H_{16}$ conversion with H_2O_2 (Figure 6). This catalytic cycle involves the quasi-equilibrated adsorption of $4\text{-}C_8H_{16}$ (step 1) and H_2O_2 (step 2), and the irreversible activation of adsorbed H_2O_2 (step 3) to form $W\text{-}(\eta^2\text{-}O_2)$ intermediates. $W\text{-}(\eta^2\text{-}O_2)$ reacts with $4\text{-}C_8H_{16}$ (step 4) to form epoxide or with H_2O_2 to form decomposition products (e.g., water and oxygen) (step 6). The reaction between $W\text{-}(\eta^2\text{-}O_2)$ and H_2O_2 is kinetically relevant, which leads to rate for H_2O_2 decomposition (r_D)

$$r_D = k_6 [H_2 O_2][W - OO]$$
 (S3)

where k_x represents the rate constant for step x in Scheme S2, [W-OO] is the number of W-(η^2 -O₂) and W-OOH, and [H₂O₂] is liquid-phase concentrations of H₂O₂. The application of pseudo-steady state hypothesis on [W-OO] leads to equation S3 to be restated as:

$$\frac{r_D}{[L]} = \frac{\frac{k_3 k_6 K_2 [H_2 O_2]^2}{k_4 [4 - C_8 H_{16}] + k_6 [H_2 O_2]}}{1 + K_1 [4 - C_8 H_{16}] + K_2 [H_2 O_2] + \frac{k_3 K_2 [H_2 O_2]}{k_4 [4 - C_8 H_{16}] + k_6 [H_2 O_2]} + \frac{[4.5 - C_8 H_{16} O]}{K_5}}$$
(S4)

where [L] is the total number of active sites and K_x is the equilibrium constant for step x in Scheme S2. The five terms in the denominator signify the numbers of sites that are occupied by CH₃CN, 4-C₈H₁₆, H₂O₂, W-(η^2 -O₂) and W-OOH, and 4,5-C₈H₁₆O, respectively.

When the W- $(\eta^2$ -O₂) and W-OOH species become the most abundant reactive intermediate (MARI), the complete form of rate expression (equation S4) takes the common form:

$$\frac{r_D}{[L]} = k_6[H_2O_2]$$
 (S5)

This simpler form well matches with experimental results shown in Figure S12 that show turnover rates for H_2O_2 decomposition over Al_2O_3 and WO_3 - Al_2O_3 increase linearly with the H_2O_2 concentration at conditions where the turnover rates for 4-octene consumption are proportional to $[4-C_8H_{16}]$ (Figure 6a), and invariant with $[H_2O_2]$ (Figure 6b), because the MARI are W- $(\eta^2$ - $O_2)$ and W-OOH species intermediates.

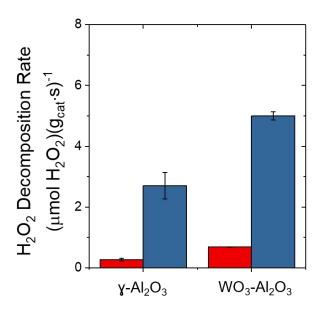
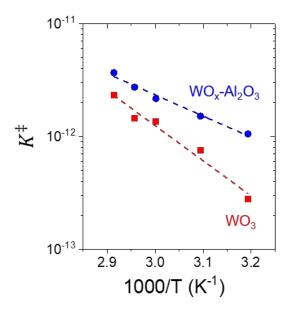


Figure S12. H_2O_2 decomposition rates over γ - Al_2O_3 and WO_x - Al_2O_3 (\blacksquare , 10 mM H_2O_2 , 39 mM H_2O_3), 0.1 M H_2O_2 , 0.39 M H_2O) at 333 K


From these expressions, the ratio of the rates for epoxidation to decomposition can be represented by the following equation:

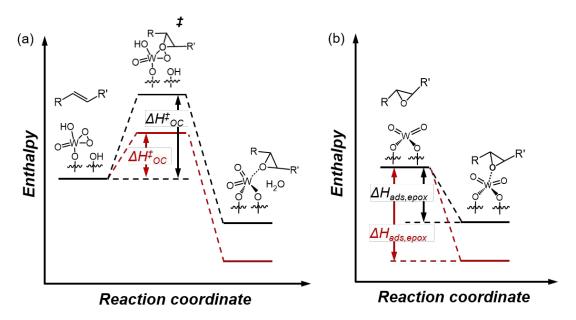
$$\frac{r_E}{r_D} = \frac{k_4[4 - C_8 H_{16}]}{k_6[H_2 O_2]} \tag{S6}$$

where equation S6 indicates the selectivity for the consumption of H_2O_2 by epoxidation (step 4) or by H_2O_2 decomposition (step 6) depends on the concentrations of $4-C_8H_{16}$ and H_2O_2 . Moreover, this rate ratio increases in proportion to the ratio of the reactant concentrations ([$4-C_8H_{16}$]/[H_2O_2]).

S6. Activation Enthalpies and Entropies for Oxidative Cleavage of 4-Octene and 1,2-Epoxyoctane Heats of Adsorption

S6.1. Measurement of Activation Enthalpies and Entropies

Figure S13. Transition state equilibrium constants for oxidative cleavage of 4-octene as a function of inverse temperature on WO_x-Al₂O₃ (\blacksquare , 0.01 M 4-C₈H₁₆, 0.1 M H₂O₂, 0.39 M H₂O) and WO₃ (\blacksquare , 0.01 M 4-C₈H₁₆, 0.1 M H₂O₂, 0.39 M H₂O) in CH₃CN. Dashed lines represent fits to the Eyring equation whose slopes are proportional to ΔH^{\ddagger} .


The apparent activation enthalpy and entropy can be determined by regression of measured $K_{\partial C}^{\ddagger}$ as a function of inverse temperature, because $K_{\partial C}^{\ddagger}$ can be expressed in terms of $\Delta H_{\partial C}^{\ddagger}$ and $\Delta S_{\partial C}^{\ddagger}$ as follow:

$$K_{OC}^{\ddagger} = e^{\left(\frac{-\Delta H_{OC}^{\ddagger}}{RT} + \frac{\Delta S_{OC}^{\ddagger}}{R}\right)}$$
 (S7)

where R is the ideal gas constant. ΔH_{OC}^{\dagger} and ΔS_{OC}^{\dagger} values for WO₃ and WO_x-Al₂O₃ catalysts were determined from Figure S13. ΔH_{OC}^{\dagger} over WO_x-Al₂O₃ (36 ± 3 kJ·mol⁻¹) is ~ 24 kJ·mol⁻¹ lower than over WO₃ (60 ± 6 kJ·mol⁻¹), which suggests that differences in the electronic structure of catalytically W-active sites supported on γ -Al₂O₃ enthalpically favor epoxidation and subsequent oxidative cleavage of 4-octene by a significant margin. ΔS_{OC}^{\dagger} values over WO₃ and WO_x-Al₂O₃ catalysts were -49 ±18 and -114 ± 8 kJ·mol⁻¹, respectively, which suggest the favorable binding enthalpy of transition state has to overcome an unfavorable loss of entropy.

In the oxidative cleavage of $4\text{-}C_8H_{16}$ with H_2O_2 over WO_x sites, the entropy losses must result from the coordination of $4\text{-}C_8H_{16}$ to the reactive $W\text{-}(\eta^2\text{-}O_2)$ species to form the epoxidation transition states. There are at least two plausible reasons this process may result in a greater entropy loss over $WO_x\text{-}Al_2O_3$ than on WO_3 First, the active sites of $WO_x\text{-}Al_2O_3$ possess greater Lewis acid strength than those on WO_3 (Figure 7, Table 2), which leads to more tightly bound transition states upon $WO_x\text{-}Al_2O_3$. Second, the hydroxyl groups and pore structure of the alumina support may influence the composition and ordering of the solvent molecules about the active sites, which would lead to differences in excess thermodynamic contributions that differ between the two materials. Other factors may also contribute, however, the specific cause of the large difference in $\Delta S_{OC}^{\ \ddagger}$ (~ 65 J mol⁻¹ K⁻¹) is not clear at this time. The compensation between $\Delta H_{OC}^{\ \ddagger}$ and $\Delta S_{OC}^{\ \ddagger}$ gives rise to turnover rates that differ by only 75% between WO_3 and $WO_x\text{-}Al_2O_3$ catalysts at 333 K, despite values of $\Delta H_{OC}^{\ \ddagger}$ over $WO_x\text{-}Al_2O_3$ (36 ± 3 kJ·mol⁻¹) that are ~ 24 kJ·mol⁻¹ lower than over WO_3 (60 ± 6 kJ·mol⁻¹).

S6.2. Changes in Enthalpy for the Formation of the Transition State and the Epoxide Adsorption to the Tungstates Active Site

Scheme S2. Changes in enthalpy that correspond to (a) the formation of the transition state for rate-determining step of oxidative cleavage (ΔH^{\ddagger}_{OC}) and (b) the adsorption of 1,2-epoxyoctane to the W site of the WO_x-Al₂O₃ (—) and WO₃ (—) catalysts.

Scheme S2 illustrates enthalpy changes corresponding to the formation of the transition state for epoxidation, which is the kinetically relevant transition state for oxidative cleavage of 4-octene, and the adsorption of 1,2-epoxyoctane onto the W site. Noticeably, the transition state structure (Scheme S1a) closely resemble the structural changes induced by adsorption of the 1,2-epoxyoctane (Scheme S1b).