Supporting Information

Periodic Trends in Olefin Epoxidation over Group IV and V Framework Substituted Zeolite Catalysts: A Kinetic and Spectroscopic Study

Daniel T. Bregante¹ and David W. Flaherty^{1,*}

¹Department of Chemical and Biomolecular Engineering University of Illinois Urbana-Champaign, Urbana, IL 61801

> *Corresponding Author Phone: (217) 244-2816 Email: dwflhrty@illinois.edu

S1.0 Additional Catalyst Characterization and Verification of Measuring True Kinetics **S1.1** Catalyst Characterization

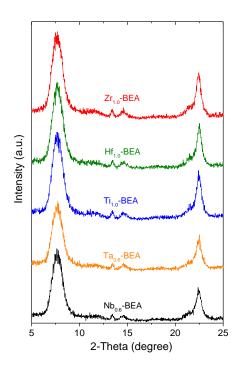


Figure S1. X-ray diffractograms for Ti_{1.0}- (blue), Zr_{1.0}- (red), Hf_{1.0}- (green), Nb_{0.6}- (black) and Ta_{0.6}- β (orange) taken on a Siemens/Bruker D5000 X-ray diffractometer with Cu K α radiation (0.15418 nm) at ambient conditions. Nb_{0.6}- β data is adapted from ref [6].

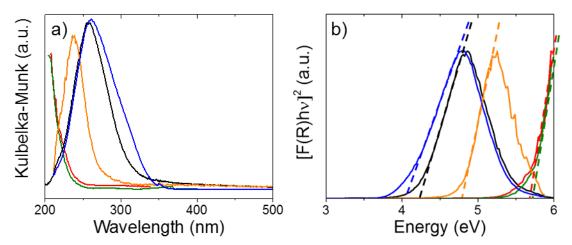


Figure S2. a) UV-vis spectra and b) Normalized tauc plots for $Ti_{0.6}$ - (blue), Nb_{1.0}- (black) and Ta_{1.0}- β (orange), Zr_{0.6}- (red), Hf_{0.6}- (green). X-axis intercept of dashed lines represents the band edge for each material. Nb_{0.6}- β data is adapted from ref [6].

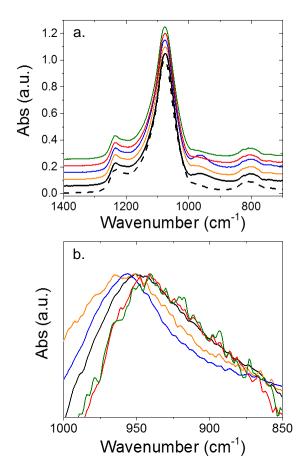


Figure S3. IR spectra for (a) Ti_{1.0}- (blue), $Zr_{1.0}$ - (red), Hf_{1.0}- (green), Nb_{0.6}- (black) and Ta_{0.6}- β (orange), and Si- β (dashed) obtained at ambient conditions and (b) M- β with Si- β spectra subtracted with normalization to the ~960 cm⁻¹ feature to observe v(Si-O-M) feature. Nb_{0.6}- β data is adapted from ref [6].

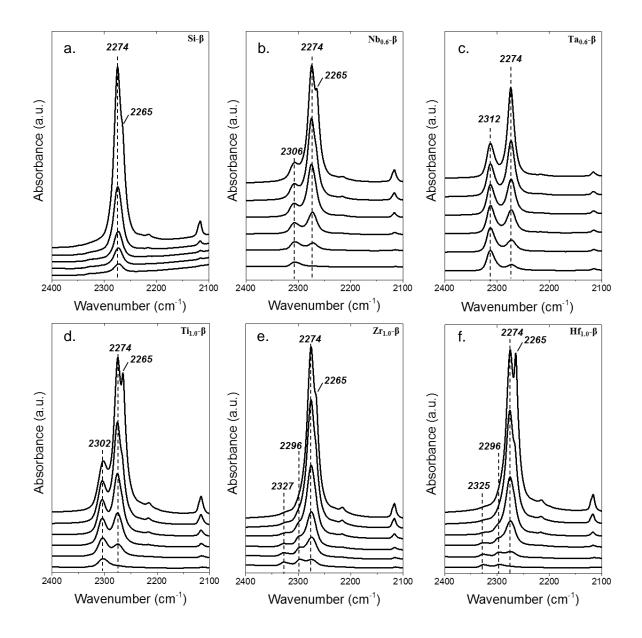


Figure S4. IR spectra of adsorbed CD₃CN (1.0 kPa, 50 cm³ min⁻¹ in He) at 298 K followed by desorption (50 cm³ min⁻¹ He) as the temperature was increased to 423 K (5 K min⁻¹) to resolve Lewis-acid bound v(C=N) on (a) Si- β , (b) Nb_{0.6}- β , (c) Ta_{0.6}- β , (d) Ti_{1.0}- β , (e) Zr_{1.0}- β , and (f) Hf_{1.0}- β . Nb_{0.6}- β data is adapted from ref [6].

Figure S4. shows FTIR spectra of CD₃CN adsorbed onto all M- β catalysts, where absorption features between 2260 – 2340 cm⁻¹ correspond to the v(C=N) mode.^{1,2} The absorbance peak located at 2274 cm⁻¹ is assigned to CD₃CN hydrogen bonded to surface SiOH groups, while the shoulder at 2265 cm⁻¹ is attributed to physisorbed CD₃CN.^{1,2} After the surfaces are saturated with CD₃CN (i.e., v(C=N) of SiOH-bound CD₃CN stopped increasing), the flow of CD₃CN is stopped and the temperature of the FTIR cell is increased under a constant flow of He (50 cm³ min⁻¹).

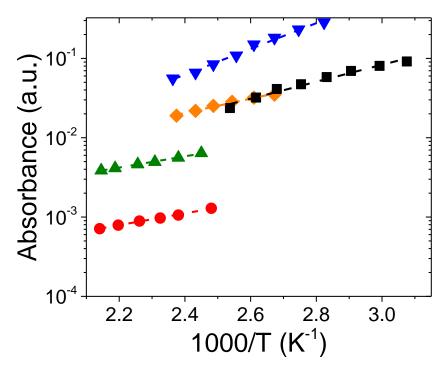


Figure S5. IR absorbances for the Lewis-acid bound v(C=N) depicted in Fig. S5b-f. on Nb_{0.6}- β (\blacksquare , 2306 cm⁻¹, Fig. S5b), Ta_{0.6}- β (\blacklozenge , 2312 cm⁻¹, Fig. S5c), Ti_{1.0}- β (\blacktriangledown , 2302 cm⁻¹, Fig. S5d), Zr_{1.0}- β (\blacklozenge , 2296 cm⁻¹, Fig. S5e), and Hf_{1.0}- β (\blacktriangle , 2296 cm⁻¹, Fig. S5f) as a function of inverse temperature (1.5 kPa CD₃CN, 99 kPa He, 50 cm³ min⁻¹ He) after background subtraction. Dashed lines represent linear fits, whose slope are proportional to the value of Δ H_{CD3CN}. Nb_{0.6}- β data is adapted from ref [6].

S1.2 Control Experiments to Test Importance of Mass Transfer

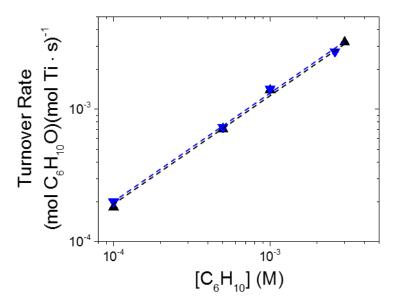


Figure S6. Turnover rates for the formation of C_6H_{10} measured as a function of $[C_6H_{10}]$ on $Ti_{1.0}$ - β (\checkmark , 0.01 M H₂O₂, 313 K) and $Ti_{0.1-\beta}$ (\blacktriangle , 0.01 M H₂O₂, 313 K). Dashed lines are intended to guide the eye.

Figure S6 shows rates for the formation of cyclohexene oxide measured as a function of cyclohexene concentration for multiple metal loadings of Ti in Ti- β . The rate of C₆H₁₀O formation is independent of metal loading (over 0.141 – 1.2 wt. % Ti), which indicates that the Madon-Boudart criterion is satisfied for Ti- β .⁵ Under the conditions tested, we see that the turnover rate for C₆H₁₀O formation is proportional to [C₆H₁₀] and independent of [H₂O₂], which corresponds to a simplified rate expression (Section 3.2 of main text) of:

$$\frac{r_E}{[L]} = k_3 [C_6 H_{10}] \tag{S1}$$

where r_E is the rate of C₆H₁₀O formation, [L] is the total number of metal atoms in the reactor, k₃ is the rate constant for step 3 of scheme 2, and [C₆H₁₀] is the concentration of C₆H₁₀. For a first-order reaction (such as in equation S1), an effective Thiele modulus for a spherical pellet⁵ can be defined as:

$$\phi = \left(\frac{k_3 R^2 [C_6 H_{10}]}{D_e}\right)^{1/2}$$
(S2)

where ϕ is the Thiele modulous, R is the radius of the spherical pellet, [C₆H₁₀] is the bulk concentration of C₆H₁₀, and D_e is the effective diffusivity of C₆H₁₀ through the pellet. The Madon-Boudart criterion is an experimental way to determine the relative value of the Thiele modulous, where the independent of turnover rates on metal loading signifies a relatively small Thiele modulous. When the Thiele modulous is small, the rates of diffusion are much greater than those for the inherent kinetics of the reaction (at reactant concentrations equal to that in the bulk fluid phase), which shows that the measured reaction rates are not corrupted by diffusion restrictions within the catalyt particles.

In Fig. 4 (main text), epoxidation turnover rates decrease in the following order: Ti > Nb > Ta >> Zr ~ Hf under conditions that result in a M-(O₂) saturated surface. Therefore, for all M- β other than Ti, the value of k₃ is much smaller while all other terms are identical. Therefore, the change in k₃ gives a smaller value of the Thiele moduli for Nb-, Ta-, Zr-, and Hf- β than for Ti- β . Therefore, satisfaction of the Madon-Boudart criterion for Ti- β proves that the other M- β are also not mass-transfer limited and all measured reaction rates are reflect only chemical kinetics.

S2. *In Situ* UV-Visible Spectroscopy and Identification of Active Intermediates S2.1 Sample Raw UV-Vis Spectrum and Method for Processing Spectra

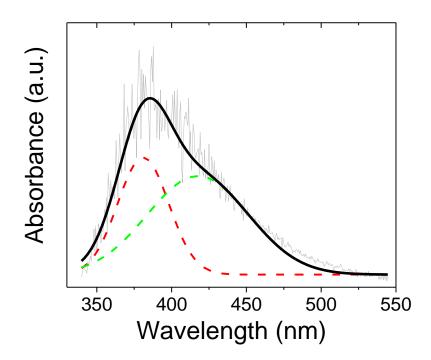
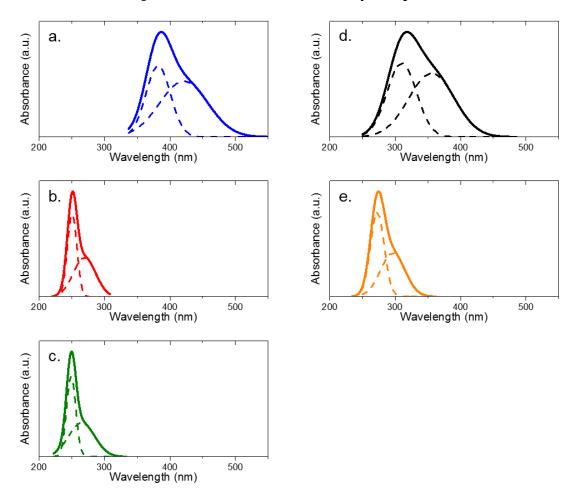


Figure S7. UV-vis absorbance spectrum (raw data, gray) of H_2O_2 -treated $Ti_{1.0}$ - β at 313 K in flowing CH₃CN (0.4 M H₂O) and smoothed data (bold black line) using a finite fourier transform. Dashed red and green curves represent Gaussian peak fittings, performed in OriginPro®.



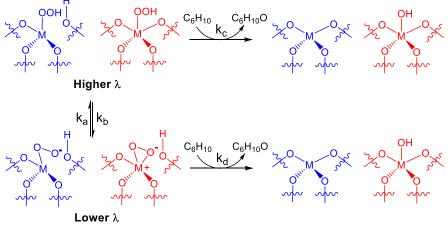
S2.2 In Situ UV-Vis Spectra with Peak Fits for All M-β Samples

Figure S8. Normalized UV-vis absorbance spectrum of H₂O₂-activated (section 2.4) (a) Ti_{1.0}- β , (b) Zr_{1.0}- β , (c) Hf_{1.0}- β , (d) Nb_{0.2}- β , and (e) Ta_{0.6}- β in flowing CH₃CN (0.4 M H₂O, 1 cm³ min⁻¹) at 313 K. Dashed curves represent Gaussian peak fittings (performed in OriginPro®) to show M-(O₂)⁻ (lower wavelength) and M-OOH/M-(O₂)²⁻ (higher wavelength) species. Nb_{0.6}- β data is adapted from ref [6].

Table S1. Ligand to metal charge transfer energies (hv) for the M-OOH/- $(O_2)^{2-}$ and M- $(O_2)^{-}$ intermediates as detected via *in situ* UV-vis spectra (Fig. S8).

Metal	hv (eV) for M-(OOH)/-(O ₂) ²⁻	hv (eV) for $M-(O_2)^-$
Ti	2.95	3.25
Zr	4.61	4.94
Hf	4.66	5.04
Nb	3.48	3.99
Та	4.56	4.21

S2.3 Time-Resolved In Situ UV-Vis Spectroscopy and Kinetic Parameter Optimization



Scheme 1 (duplicated from main text). Interconversion and consumption of M-OOH/M- $(O_2)^2$ -(M-OOH) shown) and M- $(O_2)^-$ species upon reaction with C_6H_{10} . Color coding is for clarity: group IV (Ti, Zr, and Hf, blue) and V (Nb and Ta, red).

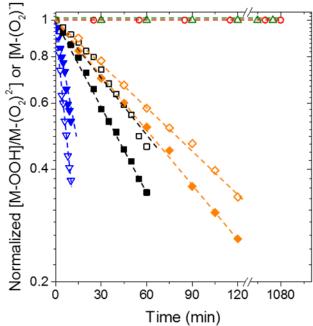


Figure 3 (duplicated from main text). Normalized surface coverages of M-OOH/M- $(O_2)^2$ (open symbols) and M- $(O_2)^-$ (closed symbols) species as a function of time for Ti_{1.0}- (\checkmark), Zr_{1.0}- (\bullet), Hf_{1.0}- (\blacktriangle), Nb_{0.2}- (\blacksquare), and Ta_{0.6}- β (\blacklozenge). Spectra were acquired *in situ* upon flowing C₆H₁₀ in CH₃CN (0.1 M, 0.4 M H₂O, 1 cm³ min⁻¹) over H₂O₂-activated samples (Section 2.4) at 313K. Closed symbols for Zr_{1.0}- and Hf_{1.0}- β coincide with the open symbols. Dashed lines are intended to guide the eye. Nb_{0.2}- β data is adapted from ref [6].

The change in surface coverage of the M-OOH/M- $(O_2)^{2-}$ and M- $(O_2)^{-}$ species depends on the summed rates of formation/consumption via interconversion and consumption by reaction with C_6H_{10} , which take the forms of:

$$\frac{d[M - (O_2)^{-}]}{dt} = k_a [M - OOH] - k_b [M - (O_2)^{-}] - k_d [M - (O_2)^{-}] [C_6 H_{10}]$$
(S3)

$$\frac{d[M - OOH]}{dt} = k_b [M - (O_2)^-] - k_a [M - OOH] - k_c [M - OOH] [C_6 H_{10}]$$
(S4)

where [M-OOH] and [M-(O₂)⁻] represent the coverages (via UV-vis) of M-OOH/M-(O₂)²⁻ and M-(O₂)⁻, respectively, and k_x is the rate constant for step x in scheme 1. Pseudo first-order kinetics are assumed for the reaction between M-(O₂) intermediates and C₆H₁₀, as throughout the experiment the ratio of [C₆H₁₀] to number of metal atoms exceeds 10⁵ in all cases. MATLABTM is used to numerically estimate the kinetic parameters, by fitting the data (Fig. 3) to the coupled differential equations (eqns. S3 and S4). The initial guesses used for the rate constants were 0.01, 0.01, 0.001 for k_a, k_b, k_c, and k_d, respectively. Changes of the initial values by an order of magnitude (increasing and decreasing) did not change the optimized parameter values.

Table S2. Numerically optimized rate constants, k_i (s⁻¹), for the interconversion of M-OOH/M-(O₂)²⁻ and M-(O₂)⁻ (Scheme 1) and reaction with C₆H₁₀.

Sample	ka	kb	kc	k _d
Ti _{1.0} -β	$1.5 \cdot 10^{-3}$	$5.0 \cdot 10^{-4}$	$2.9 \cdot 10^{-2}$	$1.7 \cdot 10^{-4}$
Nb _{0.6} -β	$3.8 \cdot 10^{-6}$	$3.3 \cdot 10^{-4}$	$2.2 \cdot 10^{-7}$	$4.5 \cdot 10^{-3}$
Ta _{0.6} -β	$4.3 \cdot 10^{-3}$	$4.3 \cdot 10^{-3}$	$1.0 \cdot 10^{-4}$	$3.3 \cdot 10^{-3}$
$Zr_{1.0}$ - β	-	-	< 10 ⁻⁶	< 10 ⁻⁶
$Hf_{1.0}$ - β	-	-	< 10 ⁻⁶	< 10 ⁻⁶

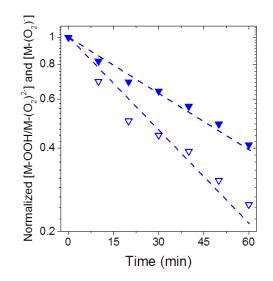
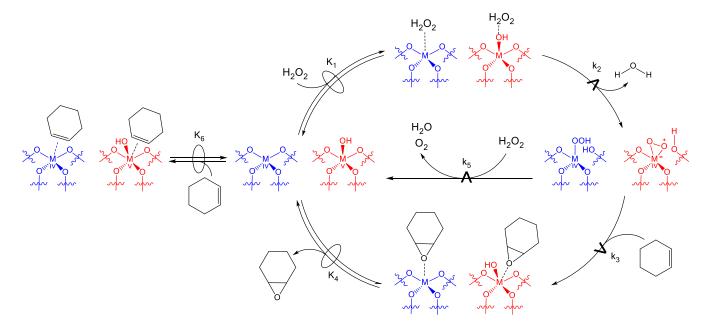


Figure S9. Change in the normalized surface coverage of M-OOH/M- $(O_2)^{2-}$ (open symbols) and M- $(O_2)^{-}$ (closed symbols) species as a function of time for Ti_{1.0}-BEA. Spectra were acquired *in situ* upon flowing *cis*-stilbene in CH₃CN (0.01 M *cis*-stilbene, 0.4 M H₂O, 0.25 cm³ min⁻¹) over H₂O₂-activated samples (Section 2.4) at 313K. To avoid misinterpretation, it should be noted that the Y-axis is log scale.

S3.0 Additional Kinetic Data, Derivation of Relevant Rate Expressions and Transition-State Theory

S3.1 Derivation of Full Rate Expression for C₆H₁₀ Epoxidation



Scheme 2 (copied from main text). Proposed mechanism for the epoxidation of C_6H_{10} with H_2O_2 over group IV (Ti, Zr, and Hf, M-OOH shown, blue) and group V (Nb and Ta, red) M- β . The symbol $\overrightarrow{++}$ represents a quasi-equilibrated step, while $\overrightarrow{++}$ represents a kinetically relevant step. Note, the unoccupied metal atoms are meant to be representations of an empty site, rather than suggest all metal atoms exist as closed sites, as both open and closed sites likely exist in these materials (see characterization results, Section 2.2).

Scheme 2 shows a series of elementary steps that account for the measured effects of $[C_6H_{10}]$ and $[H_2O_2]$ (Fig. 4) on both rates of C_6H_{10} epoxidation.⁶ The catalytic cycle involves the quasiequilibrated adsorption of H_2O_2 (step 1),⁵⁻⁷ followed by the irreversible activation of H_2O_2 (step 2) to form a pool of $M_{-}(O_2)^{-}$ (group V, superoxide)⁶ and $M_{-}OOH/M_{-}(O_2)^{2-}$ (group IV, hydroperoxide/peroxide)⁸⁻¹¹ active intermediates (referred to collectively as $M_{-}(O_2)$), which then react with C_6H_{10} to form $C_6H_{10}O$ (step 3), followed by $C_6H_{10}O$ desorption (step 4) or decompose by reaction with H_2O_2 (step 5). Measured C_6H_{10} epoxidation rates represent the kinetically relevant reaction of the active form of the oxidizing surface intermediate with a C_6H_{10} molecule:

$$r_E = k_3 [M - O_2] [C_6 H_{10}]$$
(S5)

where r_E is the rate of C₆H₁₀ epoxidation, [M-(O₂)] is the collective coverage of M-OOH/M-(O₂)²⁻ (group IV) and M-(O₂)⁻ (group V), k_x is the rate constant for step x in Scheme 2, and [C₆H₁₀] is the concentration of C₆H₁₀. Application of the pseudo-steady state hypothesis to the M-(O₂) intermediates, results in:

$$r_E = \frac{k_2 k_3 K_1 [C_6 H_{10}] [H_2 O_2] [*]}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])}$$
(S6)

Where K_x is the equilibrium constant for step x and [*] is the total number of empty (i.e., unoccupied) M atoms. An expression for [*] is given by the summation of all likely surface-bound intermediates:

$$[L] = [*] + [C_6 H_{10}^*] + [H_2 O_2^*] + [M - (O_2)] + [C_6 H_{10} O^*]$$
(S7)

where [L] is the total number of M atoms, [M-(O₂)] is the pool of M-OOH/M-(O₂)²⁻ and M-(O₂)⁻ intermediates, and [C₆H₁₀*], [H₂O₂*], and [C₆H₁₀O*] are surface-bound C₆H₁₀, H₂O₂, and C₆H₁₀O molecules, respectively. Equation S7 can then be restated in terms of the rate and equilibrium constants, as well as liquid-phase reactant concentrations and unoccupied M atoms by application of the PSSH to each specie to yield:

$$[L] = [*] + K_6[C_6H_{10}][*] + K_1[H_2O_2][*] + \frac{k_2K_1[H_2O_2][*]}{(k_3[C_6H_{10}] + k_5[H_2O_2])} + K_4[C_6H_{10}O][*]$$
(S8)

Substitution of equation S8 into S6 yields the full rate expression for $C_6H_{10}O$ formation:

$$\frac{r_E}{[L]} = \frac{\frac{k_2 k_3 K_1 [C_6 H_{10}] [H_2 O_2]}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])}}{1 + K_6 [C_6 H_{10}] + K_1 [H_2 O_2] + \frac{k_2 K_1 [H_2 O_2]}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])} + K_4 [C_6 H_{10} O]}$$
(S9)

which is consistent with equation 2 from the main text.

S3.2 Derivation of Full Rate Expression for H₂O₂ Decomposition

Scheme 2 shows a series of elementary steps that account for the measured effects of $[C_6H_{10}]$ and $[H_2O_2]$ (Fig. 4) on both rates of H_2O_2 decomposition.⁶ The catalytic cycle involves the quasiequilibrated adsorption of H_2O_2 (step 1),⁵⁻⁷ followed by the irreversible activation of H_2O_2 (step 2) to form a pool of M- $(O_2)^-$ (group V, superoxide)⁶ and M-OOH/M- $(O_2)^{2-}$ (group IV, hydroperoxide/peroxide)⁸⁻¹¹ active intermediates (referred to collectively as M- (O_2)), which then or decompose by reaction with H_2O_2 (step 5). Measured C_6H_{10} epoxidation rates represent the kinetically relevant reaction of the active form of the oxidizing surface intermediate with a C_6H_{10} molecule:

$$r_{D} = k_{5}[M - O_{2}][H_{2}O_{2}]$$
(S10)

where r_D is the rate of C₆H₁₀ epoxidation, [M-(O₂)] is the collective coverage of M-OOH/M-(O₂)²⁻ (group IV) and M-(O₂)⁻ (group V), k_x is the rate constant for step x in Scheme 2, and [H₂O₂] is the concentration of H₂O₂. Application of the pseudo-steady state hypothesis to the M-(O₂) intermediates, results in:

$$r_{D} = \frac{k_{2}k_{5}K_{1}[H_{2}O_{2}]^{2}[*]}{(k_{3}[C_{6}H_{10}] + k_{5}[H_{2}O_{2}])}$$
(S11)

Where K_x is the equilibrium constant for step x and [*] is the total number of empty (i.e., unoccupied) M atoms. An expression for [*] is given by the summation of all likely surface-bound intermediates:

$$[L] = [*] + [C_6 H_{10}^*] + [H_2 O_2^*] + [M - (O_2)] + [C_6 H_{10} O^*]$$
(S12)

where [L] is the total number of M atoms, [M-(O₂)] is the pool of M-OOH/M-(O₂)²⁻ and M-(O₂)⁻ intermediates, and [C₆H₁₀*], [H₂O₂*], and [C₆H₁₀O*] are surface-bound C₆H₁₀, H₂O₂, and C₆H₁₀O molecules, respectively. Equation S12 can then be restated in terms of the rate and equilibrium constants, as well as liquid-phase reactant concentrations and unoccupied M atoms by application of the PSSH to each specie to yield:

$$[L] = [*] + K_6[C_6H_{10}][*] + K_1[H_2O_2][*] + \frac{k_2K_1[H_2O_2][*]}{(k_3[C_6H_{10}] + k_5[H_2O_2])} + K_4[C_6H_{10}O][*]$$
(S13)

Substitution of equation S13 into S10 yields the full rate expression for H₂O₂ decomposition:

$$\frac{r_D}{[L]} = \frac{\frac{k_2 k_5 K_1 [H_2 O_2]^2}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])}}{1 + K_6 [C_6 H_{10}] + K_1 [H_2 O_2] + \frac{k_2 K_1 [H_2 O_2]}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])} + K_4 [C_6 H_{10} O]}$$
(S14)

At high $[H_2O_2]:[C_6H_{10}]$ reactant ratios, M-(O₂) species are the most abundant surface intermediates (MASI) on all M- β (Section 2.2, Fig. 3 in the main text), which simplifies equation S14 to yield:

$$\frac{r_D}{[L]} = k_5 [H_2 O_2]$$
(S15)

Figure S11 shows H_2O_2 decomposition rates for Ti-, Nb-, and Ta- β as a function of $[H_2O_2]$ at constant $[C_6H_{10}]$ under a M-(O₂) MASI. In all cases, H_2O_2 decomposition rates depend linearly on $[H_2O_2]$, which is in excellent agreement with equation S14. Collectively, these data, in comparison to the derived rate expressions, strongly suggest that H_2O_2 decomposition occurs via a bimolecular reaction pathway, where H_2O_2 reacts directly with the M-(O₂) intermediates.

Total rates of H₂O₂ consumption (r_{H2O2}) are given by the sum of equations S9 and S14 to yield:

$$\frac{r_{H2O2}}{[L]} = \frac{\frac{k_2 k_5 K_1 [H_2 O_2]^2}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])} + \frac{k_2 k_3 K_1 [C_6 H_{10}] [H_2 O_2]}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])}}{1 + K_6 [C_6 H_{10}] + K_1 [H_2 O_2] + \frac{k_2 K_1 [H_2 O_2]}{(k_3 [C_6 H_{10}] + k_5 [H_2 O_2])} + K_4 [C_6 H_{10} O]}$$
(S16)

The selectivity for H_2O_2 use in epoxidations can then be cast as the ratio of r_{H2O2} to r_E (α , i.e., equation S16 over S9) to result in:

$$\alpha = 1 + \frac{k_5 [H_2 O_2]}{k_3 [C_6 H_{10}]} \tag{S17}$$

where the numerator (i.e., $k_5[H_2O_2]$) and denominator (i.e., $k_3[C_6H_{10}]$) may be estimated for Ti-, Nb-, and Ta- β by inspection of Figs. 3 and S11. Table S3 shows the ratio of $k_5[H_2O_2]:k_3[C_6H_{10}]$ for Ti-, Nb-, and Ta- β under conditions that result in a C₆H₁₀O MASI (i.e., the conditions in Fig. 3b). The relative values of $k_5[H_2O_2]:k_3[C_6H_{10}]$ for Ti-, Nb-, and Ta- β under a C₆H₁₀O MASI shows that $k_3[C_6H_{10}] >> k_5[H_2O_2]$.

Table S3. Calculated ratios of $k_5[H_2O_2]:k_3[C_6H_{10}]$ using interpolated values from Figs. 3 and S11 for Nb_{0.6}-, Ta_{0.6}-, and Ti_{1.0}- β at conditions that result in a C₆H₁₀O MASI (i.e., conditions in Fig. 3b).

Sample	$k_5[H_2O_2]/k_3[C_6H_{10}]$
Nb _{0.6} -β	0.05
Ta _{0.6} - β	0.0009
Ti _{1.0-} β	0.025

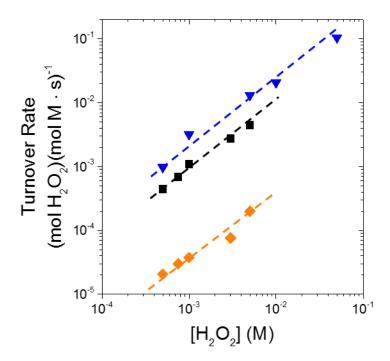


Figure S10. H₂O₂ decomposition rates as a function of $[H_2O_2]$ over Nb_{0.6}- β (\blacksquare , 0.05 M C₆H₁₀, 313 K), Ta_{0.6}- β (\blacklozenge , 2 mM C₆H₁₀, 313 K), and Ti_{1.0}- β (\blacktriangledown , 0.01 M C₆H₁₀, 313 K). Dashed lines are intended to guide the eye. Nb_{0.6}- β data is adapted from ref [6].

S3.3 Transition-State Theory for Measurement of Activation Enthalpies and Entropies

Transition-state theory (TST) is used to relate the stability of the reference state (e.g., M-(O₂) intermediate) to an activated complex that leads to reaction (i.e., the transition state).^{6,12,13} TST, when combined with our proposed mechanism (Scheme 2), proposes that the reactant species (i.e., M-(O₂), H₂O₂, and C₆H₁₀) exist in equilibrium with the transition state to yield:

$$\frac{r_E}{[L]} = \frac{k_B T}{h} K_E^{\ddagger} [C_6 H_{10}]$$
(S15)

$$\frac{r_E}{[L]} = \frac{k_B T}{h} K_D^{\dagger} [H_2 O_2]$$
(S16)

where k_B is Boltzmann's constant, h is Planck's constant, T is the temperature in kelvin, K_E^{\ddagger} and K_D^{\ddagger} are the Transition-state equilibrium constants for epoxidation and H₂O₂ decomposition, respectively, and [C₆H₁₀] is the concentration of C₆H₁₀. Values of K_E^{\ddagger} and K_D^{\ddagger} may be expressed in terms of free energy, via the Eyring equation, to result in:

$$K_{x}^{\ddagger} = e^{-\Delta G_{x}^{\ddagger}/RT} = e^{-\Delta H_{x}^{\ddagger}/RT} e^{\Delta S_{x}^{\ddagger}/R}$$
(S17)

Where R is the ideal gas constant and ΔG^{\ddagger} , ΔH^{\ddagger} , and ΔS^{\ddagger} is the Gibb's free energy, enthalpy, and entropy of activation, respectively. Figure S8 shows measured values for K_E^{\ddagger} and K_D^{\ddagger} as a function of inverse temperature for all M- β .

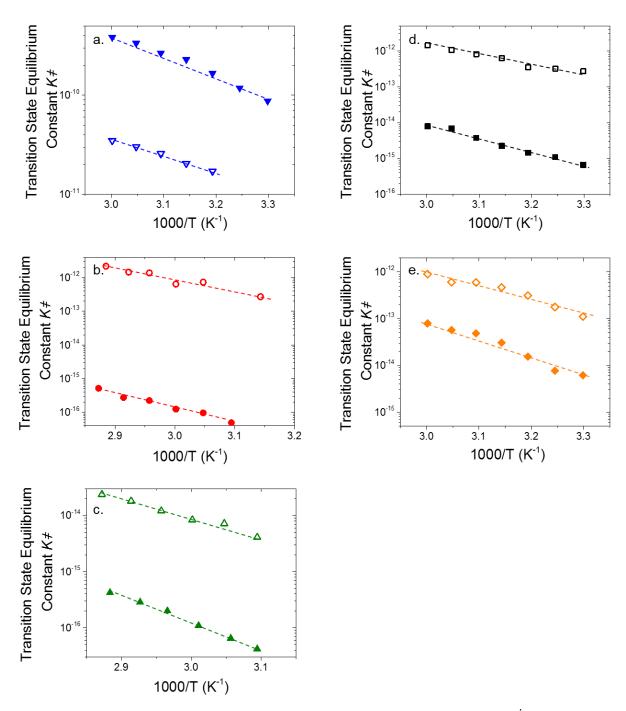


Figure S11. Transition state equilibrium constants for C_6H_{10} epoxidation (K_E^{\ddagger} , closed symbols) and H_2O_2 decomposition (K_D^{\ddagger} , open symbols) as functions of inverse temperature on (a) $Ti_{1.0}$ - β (\checkmark , 0.5 mM C_6H_{10} , 0.05 M H_2O_2), (b) $Zr_{1.0}$ - β (\bullet , 0.5 mM C_6H_{10} , 0.1 M H_2O_2), (c) $Hf_{1.0}$ - β (\bigstar , 0.5 mM C_6H_{10} , 0.1 M H_2O_2), (d) $Nb_{0.6}$ - β (\bullet , 0.05 M C_6H_{10} , 1 mM H_2O_2), and (d) $Ta_{0.6}$ - β (\blacklozenge , 0.01 M C_6H_{10} , 1 mM H_2O_2) under a M-(O_2) MASI. Error bars were omitted for clarity. In all reported data, error was < 7%. Lines represent fits to the Eyring equation (equation S5). $Nb_{0.6}$ - β data is adapted from ref [6].

S4. Effects of Metal Electronegativity (Pauling and Mulliken) on Activation Enthalpies and Measured CD₃CN Adsorption Enthalpies

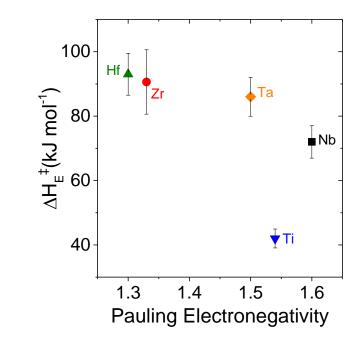


Figure S12. Activation enthalpies for C_6H_{10} epxoidation (ΔH_E^{\ddagger}), measured on a M-(O₂) MASI (Fig. S8), as a function of metal-atom Pauling electronegativity on Ti_{1.0}- β (\checkmark), Zr_{1.0}- β (\bullet), Hf_{1.0}- β (\blacktriangle), Nb_{0.6}- β (\blacksquare), and Ta_{0.6}- β (\blacklozenge).

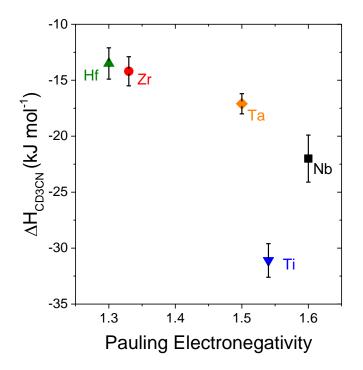


Figure S13. Measured CD₃CN adsorption enthalpies (Section 2.2) as a function of metal-atom Pauling electronegativity on Ti_{1.0}- β (\checkmark), Zr_{1.0}- β (\bullet), Hf_{1.0}- β (\blacktriangle), Nb_{0.6}- β (\blacksquare), and Ta_{0.6}- β (\blacklozenge).

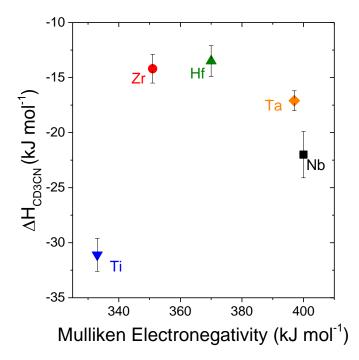


Figure S14. Measured CD₃CN adsorption enthalpies (Section 2.2) as a function of metal-atom Mulliken electronegativity on $Ti_{1.0}$ - β (\checkmark), $Zr_{1.0}$ - β (\bullet), $Hf_{1.0}$ - β (\blacktriangle), $Nb_{0.6}$ - β (\blacksquare), and $Ta_{0.6}$ - β (\blacklozenge). Mulliken electronegativity values are adapted from ref [14].

References:

- (1) Boronat, M.; Concepción, P.; Corma, A.; Renz, M.; Valencia, S. J. Catal. 2005, 234, 111-118.
- (2) Roy, S.; Bakhmutsky, K.; Mahmoud, E.; Lobo, R. F.; Gorte, R. J. ACS Catal. 2013, *3*, 573-580.
- (3) Sushkevich, V. L.; Vimont, A.; Travert, A.; Ivanova, I. I. *J. Phys. Chem. C* 2015, *119*, 17633-17639.
- (4) Harris, J. W.; Cordon, M. J.; Di Iorio, J. R.; Vega-Vila, J. C.; Ribeiro, F. H.; Gounder, R. *J. Catal.* **2016**, *335*, 141-154.
- (5) Madon, R. J.; Boudart, M. Ind. Eng. Chem. Fundam. 1982, 21, 438-447.
- (6) Bregante, D. T.; Priyadarshini, P.; Flaherty, D. W. J. Catal. 2017, 348, 75-89.
- (7) Ruddy, D. A.; Tilley, T. D. J. Am. Chem. Soc. 2008, 130, 11088-11096.
- (8) Wilson, N. M.; Bregante, D. T.; Priyadarshini, P.; Flaherty, D. W. *Catalysis* **2017**, *29*, 122-212.
- (9) Lin, W.; Frei, H. J. Am. Chem. Soc. 2002, 124, 9292.-9298
- (10) Bonino, F.; Damin, A.; Ricchiardi, G.; Ricci, M.; Spano, G.; D'Aloisio, R.; Zecchina, A.; Lamberti, C.; Prestipino, C.; Bordiga, S. J. Phys. Chem. B **2008**, *108*, 3573-3583.
- (11) Bordiga, S.; Damin, A.; Bonino, F.; Ricchiardi, G.; Lamberti, C.; Zecchina, A. *Angew. Chem. Int. Ed. Engl.* **2002**, *41*, 4734-4737.
- (12) Flaherty, D. W.; Iglesia, E. J. Am. Chem. Soc. 2013, 135, 18586-18599.
- (13) Wilson, N. M.; Flaherty, D. W. J. Am. Chem. Soc. 2016, 138, 574-586.
- (14) Gunther, W. R.; Michaelis, V. K.; Griffin, R. G.; Román-Leshkov, Y. J. Phys. Chem. C **2016**, *120*, 28533-28544.